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ABSTRACT: Acoustic emission (AE) source location in a
unidirectional carbon-fiber-reinforced plastic plate was
attempted with artificial neural network (ANN) technology.
The AE events were produced by a lead break, and the
response wave was received by piezoelectric sensors. The
time of arrival, determined through the conventional thresh-
old-crossing technique, was used to measure the depend-
ence of the wave velocity on the fiber orientation. A simple
empirical formula, relying on classical lamination and sug-
gested by wave-propagation theory, was able to accurately
model the experimental trend. On the basis of the formula,

virtual training and testing data sets were generated for the
case of a plate monitored by three transducers and were
adopted to select two potentially effective ANN architec-
tures. For final validation, experimental tests were carried
out, with the source positioned at predetermined points
evenly distributed within the plate area. A very satisfactory
correlation was found between the actual source locations
and those predicted by the virtually trained ANNs. VC 2011
Wiley Periodicals, Inc. J Appl Polym Sci 122: 3506–3513, 2011
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INTRODUCTION

Acoustic emission (AE) has long been recognized as a
viable technique for the real-time monitoring of metal-
lic and composite structures, giving useful information
not only on the presence of defects but also on their
criticality.1–4 In the case of composites characterized by
a multiplicity of failure modes, the possibility has also
been devised to discriminate among the different dam-
age mechanisms by a careful analysis of the wave
features.5,6 Therefore, AE methods are promising mon-
itoring systems, helpful in improving safety and reduc-
ing maintenance costs in industrial applications.

An attractive feature of AE is its ability to locate
defects. Tobias7 showed that for isotropic plates, the
problem of source location could be solved in a
closed form by triangulation if the difference in the
arrival times of the acoustic waves at three probes
placed on the plate surface is known. Although this
solution seems to be straightforward, many draw-
backs, essentially correlated with the laws governing
wave propagation, arise where practical applications
are concerned.

An acoustic wave generated by a localized source
in a platelike structure propagates in two basic

modes: the symmetric (also known as the exten-
sional) mode, associated with the in-plane properties
of the plate, and the antisymmetric (flexural) mode,
which depends on the flexural properties. Both these
modes are dispersive, that is, their velocity is a func-
tion of the frequency. Thus, the pulse changes shape
with increasing distance from the source. This phe-
nomenon greatly affects the precision in source loca-
tion with the threshold-crossing technique because
the individuation of the phase point of the wave-
forms to assume as a reference for time measure-
ment is not easy.8,9

The dispersive nature of extensional waves clearly
appears only at quite high frequencies. For suffi-
ciently low frequencies, the symmetric waves are
substantially nondispersive, and their velocity can
be calculated by very simple analytical tools.8,10

These attributes have been exploited in commercial
AE instrumentation to suitably improve source
location.
Although strongly dispersive at low frequencies,

flexural waves offer an outstanding advantage com-
pared with extensional ones: their magnitude is
much larger, so they propagate greater distances;
this allows the monitoring of large structures with
the use of a limited number of sensors. This potenti-
ality explains the great deal of work devoted to the
propagation of acoustic waves in dispersive media
and to methods for reliable measurement of the time
of arrival (TOA) under these conditions.6–8,10,11
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Because of the anisotropy of composite laminates,
AE source location in these materials encounters
additional difficulties. In fact, because of the de-
pendence of the elastic properties on direction, the
wave velocity (ve) is also a function of orientation;
this renders useless the closed-form formulation
proposed by Tobias.7 Consequently, triangulation is
performed by iteration.11 Alternatively, another tech-
nique, based on the minimization of an error func-
tion suitably defined, was recently proposed.12

Notably, the location methods available nowadays
imply the knowledge of the laminate elastic proper-
ties. Therefore, the error in location is influenced not
only by the TOA precision but also by the ability to
accurately calculate the engineering in-plane and
flexural elastic moduli and the shear moduli along
the thickness direction. This is not always simple to
predict because of the laminar structure of the com-
posites of technical interest.13 An approach poten-
tially useful for overcoming this difficulty is offered
by artificial neural networks (ANNs), which have
found widespread application in many scientific
domains, providing reliable solutions.14,15 ANN
analysis is a general method of nonlinear regression,
applicable in principle wherever some input varia-
bles determine output results following rules not
amenable to a mathematical formulation. ANNs can
learn by examples arranged according to a training
set, so in the case of AE source location, the role
played by the elastic moduli is intrinsically taken
into account in the training data.

SCOPE

The engineering problem faced in this study is sche-
matically depicted in Figure 1. A square composite
plate is monitored by three AE sensors (Pi’s), located
as shown in the figure. When an acoustic signal is
generated at point S, the wave travels within the
material, achieving the probes after times depending
on both the length (di) and the orientation of the
lines connecting the source point to each sensor.
Knowing the TOA at each sensor, the source location
(i.e., the coordinates x and y of point S) was deter-
mined with ANN.

If a model able to yield TOA as a function of the
fiber orientation (y) and distance from the source is
available, the TOA at each probe in Figure 1 can be
easily calculated. Therefore, the training set neces-
sary for network learning can be developed without
experimental tests. In principle, this offers an attrac-
tive means to virtually train the candidate ANN
architectures and to find the most effective solution.

The previous considerations illustrate the signifi-
cance of this work, where a simple empirical law,
useful for providing TOA in an orthotropic compos-
ite plate, was assessed by experimental tests. Using

this law, we constructed a virtual training set and
used it to design two potentially efficient ANNs.
The precision of the networks was estimated by
comparison of the ANN predictions with the results
of appropriate AE tests.
The characteristics of the AE signals were not

affected by stacking sequence of the laminate but
were dependent on the failure mechanism or
source.16,17 Because the difficulty in source location
increased with increasing anisotropy ratio of the ma-
terial under concern,11,18 a unidirectional carbon-
fiber-reinforced plastic (CFRP), characterized by a
very high anisotropy ratio, was purposely selected in
this work. However, in the literature, many research-
ers16–19 have demonstrated the consistency in AE
parameters for different classes of laminates, proving
the efficiency of ANN in characterizing them. In par-
ticular, Bar et al.16 successfully found identical charac-
teristics of AE events between unidirectional compo-
sites and laminates different in stacking sequences
and the classification of AE parameters through ANN.

EXPERIMENTAL

A square unidirectional CFRP laminate, 340 mm on
a side and 2 mm in nominal thickness (t) was fabri-
cated by the manual laying up of eight layers of
BMS 8-276 Toray prepreg, which were vacuum-
bagged and cured under a press at 177�C tempera-
ture and 0.5 MPa pressure. The laminate was
trimmed by a diamond cutting tool to obtain a
square panel 300 mm on a side, which was used in
the subsequent experimental campaign.
The source in all AE tests was a lead break (Pentel

2H, 0.5 mm). The waves were detected by a Vallen
AMSY4 16-channel instrument (Vallen-Systeme
Gmbh, Ichking, Munich, Germany), with VS150-M

Figure 1 Square composite plate monitored by three AE
sensors (P1, P2, P3).
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transducers resonant at 150 kHz, 20.5 mm in diame-
ter, and coupled to the plate by vacuum grease. The
signals were filtered by 95-kHz high-pass filters,
amplified by 34 dB with acoustic emission preampli-
fiers (AEP3), and then transferred to an acoustic
signal preprocessor (ASIPP) board for digitalization
and extraction of the relevant AE parameters. The
acquisition time was 0.2 ls, whereas the threshold
for TOA measurement was fixed at 28.8 dB. All of
the data were stored in a computer for subsequent
visualization and analysis.

A scheme of the acquisition chain is depicted in
Figure 2.

The ANN architectures were designed by Pelta-
rion Synapse commercial software, run on a Mac-
Book computer equipped with a 2.16-GHz Intel Core
2 Duo processor in Windows ambient.

RESULTS AND DISCUSSION

In this section, the possibility of predicting TOA as a
function of distance from the source and material
orientation is first presented and discussed. Then,
the optimization of the ANN architecture is
addressed. Finally, the experimental validation of
the ANN performances is demonstrated.

TOA prediction

As noted previously, the dispersive nature of acous-
tic waves can result in an incorrect evaluation of
TOA through the threshold-crossing technique. Of
course, because TOA was selected in this work for
source location, the possibility of succeeding in
accomplishing the goal was critically dependent on
the ability to accurately measure this parameter.

To verify the consistency of the TOA values pro-
vided by the AE system, acoustic waves were
excited by lead breaks and detected by three sensors,
located at known distances from the source along a
straight line (Fig. 3) oriented at y with respect to the

fiber direction. The distance of the source from the
center of first sensor (S1) was approximately 20 mm,
and the distance between the two subsequent sen-
sors (S2, S3) was 100 mm. Although, in theory, the
material behavior should be the same for þy and
�y, we preferred to scan the entire range from �90
to 90�. In fact, deviations of the actual acoustic
response from what is expected on the basis of ma-
terial symmetry, which probably reflect imperfec-
tions in the composite structure, have been noticed
sometimes.12

The amplitude of the signal measured by the AE
instrumentation in correspondence of S1 was typi-
cally 96–100 dB, regardless of the angle (y) consid-
ered. Of course, because of attenuation, the signal
amplitude decreased steadily with increasing travel-
ing distance. However, the amplitude was in the
range 67–77 dB, well beyond the threshold value set
(28.8 dB) at the sensor (S3) farthest from the source.
Typical plots of the acoustic signals recorded at

each sensor are shown in Figure 4. In each of the
diagrams in the figure, t ¼ 0 conventionally coincides
with the time where the threshold amplitude was
overcome at the specific sensor, whereas the actual
time (in ls) is visible on the upper right corner.
From the differences in TOA (Dt’s) between two

subsequent probes, two independent values of ve
were defined as follows:

ve ¼ Dd
Dt

(1)

where Dd is the distance between the transducers
and was calculated for each experimental test.
In Figure 5, the experimental ve values are plotted

versus y. In the figure, different symbols are used to
distinguish between the velocities measured within
the intervals S1–S2 (~) and S2–S3 (*), respectively.

Figure 2 AE measuring chain.

Figure 3 Experimental setup for the measurement of
TOA.
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As anticipated from the material anisotropy, ve
was strongly dependent on orientation, steadily
decreasing with increasing y. The symmetry of ve
with respect to y ¼ 0� was substantially fulfilled,
with the largest difference (ca. 11%) occurring
between þ15 and �15�. In general, the scatter in the
data was low. Besides, ve was independent of dis-
tance when we assessed the consistency of the TOA
measurements; therefore, if a suitable expression
able to yield ve ¼ ve(y) is available, Eq. (1) can be
used to theoretically predict TOA for whichever ori-
entation and distance from the source.

The continuous line in Figure 5 is the graphical
expression of the following equation:

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex

q 1� mxymyx
� �

s
(2)

where E is Young’s modulus and m is Poisson’s ratio
and the indices x and y affecting them designate the
propagation direction and its perpendicular, respec-
tively. Also, q is the material density. Equation (2)
was suggested by the following well-known relation-
ship:8

ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

q 1� m2ð Þ

s
(3)

This equation is valid for extensional waves prop-
agating in an isotropic medium, with the quantity
E/(1 � m2) substituted with its equivalent for an
orthotropic material: Ex/(1 � mxymyx).
To draw the curve in Figure 5, attempt values

were assigned to the basic elastic moduli of the lam-
ina, E1, E2, G12, and m12, where G12 is the shear
modulus; then, the material moduli in Eq. (2) were
calculated by classical lamination theory; finally,
the basic moduli were varied until a satisfactory
correlation of the curve with the experimental trend
was found. q was assumed to be 1.55 g/cm3, typical
of BMS 8-276. The results in Figure 5 were obtained
with the following values: E1 ¼ 142 GPa, E2 ¼ 9.2
GPa, G12 ¼ 6.7 GPa, and m12 ¼ 0.34.
Indeed, the correlation between the experimental

points in Figure 5 and Eq. (2) is outstanding. There-
fore, a simple formula is available for the accurate
prediction of TOA. As is shown later, having this
tool can significantly ease the development of the
ANNs devoted to source location.

Figure 4 Waveforms recorded by the three probes (y¼ 45�).

Figure 5 ve against y. Different symbols are used to dis-
tinguish between the velocities measured within the inter-
vals S1–S2 (~) and S2–S3 (*), respectively.
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ANN architecture

In an ANN, simple processing elements (the neu-
rons) are connected together to form a complex net-
work of nodes. Some of the neurons are destined to
receive the input parameters and form the input
layer; others provide the desired numerical values
and are collected in the output layer. Between the
input and output layers, one or more hidden layers
are contained, each holding an assigned number of
neurons. In flowing along a connection, the signal is
multiplied by a specific value (weight), which deter-
mines its effect on the output.

When an ANN has been designed, its ability to
solve an engineering problem must be exploited in a
learning stage. To do this, a training data set, con-
sisting of input values and corresponding desired
output values, must be available and must be ana-
lyzed by the network. The learning mechanism con-
sists of an iterative process, during which a progres-
sive change of the weights affecting each connection
occurs, according to a preset law (transfer function),
until a satisfactory agreement between the desired
and predicted outputs is achieved.

The consistency in AE parameters of the signals
generated in composite laminates proves the effi-
ciency of ANN, and the possible diagnosis of the
actual damage performed instantly with a well-
developed ANN is demonstrated.16,17,19 One of the
most challenging tasks in designing an ANN net-
work is its optimization, for which no definite rules
exist at present. The problem is complicated by the
large number of possible choices, which involve the
network architecture (e.g., number of layers, nodes
in each of them, number of connections between the
nodes), transfer function typology, number of train-
ing cycles (epochs), sensors placement, and so on.18

To limit the ANN design work, preliminary con-
straints were assumed in this study. The differences
in TOA recorded by the three probes (Pi’s) in Figure
1 were adopted as input parameters, so the input
layer was made of three neurons, and the output
layer was supplied with two nodes, providing the
abscissa and the ordinate of the source S.

From theory, there is no reason to use neural net-
works with more than two hidden layers, by which
whichever function can be represented with accu-
racy.14 Therefore, in the determination of a satisfac-
tory ANN architecture, the number of hidden layers
(Nhl) was held constant (Nhl ¼ 2), and the number of
their nodes was varied. In all, 15 different ANN
architectures were analyzed. In each of them, the
number of nodes in the hidden layers was randomly
determined; this fulfilled the condition of a total
number of nodes comprised in the range 6–30.
The general structure of the ANNs examined (Fig.

6) pertained to multilayer perception and was
trained according to the backpropagation algorithm.
Other relevant parameters, collected in Table I, were
set to their default values and were not altered along
all of the ANN design stage.
As stated previously, to proceed to the learning

stage of an ANN, a training set is required. The
usual way to build the training set is to perform a
sufficient number of experimental tests with suitable
variation of the location of the source S (Fig. 1) and
to measure the associated TOA. This route is time-
consuming because hundreds of data are needed to
be confident in a satisfactory accuracy of the net-
work. However, if the dependence of ve on the ori-
entation is given, from it, the TOA can be simply
calculated, knowing the source location. This
method was applied in this work: 2500 different
location points were selected by a random-number
generator; for each, the TOA at the three sensors
was theoretically evaluated as the ratio di/ve (Fig. 1),
with Eq. (1) used to calculate ve; finally, 15% of the
location points theoretically evaluated were used for
cross-validation during the training stage. Training
was stopped after a maximum of 5 � 104 iterations
or when the error signaled by the learning curve
dropped below 0.005%, whichever of these condi-
tions was met first.
After training, the ANNs examined were subjected

to a validation test to assess their effectiveness. A
testing set, consisting of 14 unknown location points,
was built according to the same procedure described
for the training set and was presented to the net-
work. The distance (D) between each input and

Figure 6 General structure of the ANNs examined.

TABLE I
Relevant Parameters Adopted in the Development of the

ANNs

Stage Feature Value

Design Forward rule No rule
Back rule Step rule

Transfer function Tanh sigmoid
Step 0.1

Momentum 0.7
Training Batch length 1

Validation interval 5
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associated predicted point was calculated, and the
characteristic distance (Dc) was arbitrarily defined as
follows:

Dc ¼ Dm þ SD (4)

where Dm is the arithmetic mean of the distance and
SD is the standard deviation and was assumed as an
error parameter, on the basis of which the different
ANN architectures were ranked.

The best ANN network, selected according to the
previous procedure, consisted of a 3/10/8/2 struc-
ture; that is, it was made of 10 and 8 nodes in the
first and second hidden layers, respectively, and had
three nodes in the input layer and two nodes in the
output layer. For this solution, Dc ¼ 2.0 mm, with
Dm ¼ 1.24 mm and SD ¼ 0.76 mm, computed (Table
II) after about 4 � 104 epochs, requiring a training
time of approximately 16 min, was accomplished.

A comparison of the points included in the testing
set and their positions as predicted by the 3/10/8/2
ANN is shown in Figure 7, where the network is
individuated by the label 3IN (three input nodes).
The black arrow in the figure indicates the point in
correspondence of which the maximum distance
(Dmax ¼ 2.62 mm) of the predicted from the real
source location was found.

Indeed, only two of the three differences in TOA
used as input data for the ANN architectures in Fig-
ure 6 are independent because a simple relationship
correlating them could be easily established. To ver-
ify the effect of the redundant input parameter on
the ANN performances, a 2/10/8/2 network, identi-
cal to the 3/10/8/2 except in the number of input
nodes, was designed and trained. Approximately 4.5
� 104 training iterations, completed in 19 min, were
required to achieve the assigned accuracy. The white
diamonds in Figure 7 are the predictions of this
ANN (labeled as 2IN for two input nodes), fed with
the appropriate differences in TOA included in the
testing set. The white arrow indicates the location
point where the maximum error (Dmax ¼ 1.58 mm)
was verified. The main accuracy parameters are
shown in Table II. From them, the 2/10/8/2 net-
work was foreseen to perform better than its 3/10/
8/2 counterpart. Therefore, it seemed that the redun-
dant input parameter did not result in a more effec-
tive response of ANN. Furthermore, this finding
suggests that an even more efficient solution might
be individuated by an accurate optimization
procedure.

Experimental validation

To assess the two ANN architectures selected, exper-
imental tests were performed with, as source loca-
tions, the points represented by the black circles in
Figure 8. Acoustic waves were generated by lead
breaks, and the measured TOAs were given in input
to the trained ANNs, which provided the predicted
locations (open symbols in the figure).
The correlation between the actual and predicted

source locations was very satisfactory. Besides, the
2/10/8/2 configuration seemed to be more effective
than the 3/10/8/2 one (Table II), although its

TABLE II
Accuracy Parameters Characterizing the ANNs

Considered in this Study

Data source
ANN

architecture
Dm

(mm)
SD

(mm)
Dc

(mm)
Dmax

(mm)

Testing set 3/10/8/2 1.24 0.76 2.00 2.62
2/10/8/2 0.94 0.37 1.30 1.58

Experimental 3/10/8/2 2.18 1.99 4.17 6.95
2/10/8/2 1.85 2.04 3.89 7.03

Figure 7 Comparison between the source locations
included in the testing set and those predicted by ANNs.

Figure 8 Comparison between the experimental and pre-
dicted source locations.
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superiority was less evident than expected from the
virtual testing results.

All the Dm, SD, Dc, and Dmax values derived from
the experimental tests were higher than their coun-
terparts obtained in the testing stage. This phenom-
enon was anticipated and reflected the scatter in the
experimental data that was absent in the testing set.

With theory, the differences in TOAs between the
sensors (Pi’s) in Figure 1 were calculated and com-
pared with the experimental ones. The results are
shown in Figure 9, where the label ti�j designates
the difference in TOAs between probes i and j.

From Figure 9, the agreement between theory and
experiments was excellent, as witnessed by the sym-
bols, sensibly falling along the 45� continuous
straight line, which was drawn for reference. This
explains why the virtual ANN training was success-
ful in yielding an effective architecture, which was
directly usable for interpreting the experimental
results.

Additional considerations

From our results, we found that a virtually trained
ANN was able to correctly locate AE sources in
orthotropic laminates. To achieve this task, two tools
were necessary: (1) an experimental technique that
provided a precise measurement of the TOA under
the operating conditions and (2) a reliable method,
empirically assessed or theoretically developed,
through which the TOA associated with a generic
point within the area monitored could be estimated.

The accuracy of the predictive method determined
the correctness of ANN training. It is important to
realize that, whereas Eq. (2) was used in this work
to express ve ¼ ve(y), whichever function was able to
follow the experimental trend in Figure 5 (e.g., a

polynomial of suitable degree) would have been
equally useful to the aim in the case examined. It
was inferred that possible differences between ve(y)
and ve(�y) resulting from imperfections in the mate-
rial structure could be accounted for by selection of
the most appropriate relationship.
The precision in the measurement of TOA directly

influenced the goodness of the ANN input data. In
the case examined, similarly to the findings of other
researchers,7,12 the threshold-crossing technique was
adequate for yielding consistent values of TOA.
However, alternative methods, among which the
most popular was the Gabor wavelet transform,
have been also presented and have been demon-
strated to be able to provide reliable TOA estimates
when the dispersive nature of the waves renders the
task more difficult.5,10,11

It is important to note that the ability of a trained
ANN to solve location problems is strictly dependent
on the sensor positions. Changing the probes’
arrangement will require a new training stage and
perhaps a different network architecture for a satis-
factory response. On one hand, this is a limitation
intrinsic to the method; on the other hand, the results
obtained in this work suggest a virtual means for
studying the effect of different parameters (e.g., sen-
sors location, number of sensors employed in moni-
toring) on the expected accuracy of the predictions.
In this case, where a flat panel 780 cm2 in area

was monitored by three AE sensors, the maximum
error in the source location was about 7 mm (Table
II). A comparison of this result with equivalent pre-
dictions based on other location algorithms to judge
the effectiveness of the method proposed was not
straightforward. Indeed, many factors, among them
the sensor number and location, extent of monitored
area, and material anisotropy, play a major role in
affecting the precision. However, a situation similar
to that faced here was experienced by Jeong and
Jang,11 who used a unidirectional graphite/epoxy
square plate 600 mm on a side to monitor the area
within three sensors arranged according to a trian-
gular array. The distance between the probes was
not specified by the authors; however, from the fig-
ures available, the area under control was compara-
ble to the one considered here. The maximum error
in location, determined by classical triangulation,
was 6.3 mm. A slightly better precision was
achieved when the laminate monitored was quasi-
isotropic. The maximum error was quoted to be 12.4
mm by Banerjee et al.,20 who used nine piezoelectric
sensors evenly distributed over a 400-cm2 area of a
stiffened CFRP panel, together with a sophisticated
analysis based on high-frequency wave propagation
data and low-frequency vibration measurements. Far
less accurate estimates were documented by Cover-
ley and Staszewski,18 who embedded 12 SMART

Figure 9 Comparison of the theoretical and experimental
differences in the TOAs of the source waves at the three
AE sensors.
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sensors in a 608 � 304 mm2 quasi-isotropic compos-
ite panel, trying to predict the impact location by a
triangulation technique coupled with an optimiza-
tion genetic algorithm procedure. When only three
of the sensors were used to predict the impact loca-
tion, errors on the order of many centimeters were
discovered for both of the point coordinates.

The application of ANNs in source location
appears promising not only for flat but also for
curved composite components. Prevoroski et al.21

monitored [þ55/�55] glass fiber–epoxy filament
wound tubes by six AE transducers distributed over
a 500-cm2 area. The TOA data were sent to an ANN
for source location; this resulted in an error lower
than 8 mm.

CONCLUSIONS

In this work, the AE source location in a unidirec-
tional CFRP plate was predicted by virtually trained
ANNs with the differences in TOAs of the waves
between three sensors places on the material surface.
From the results obtained and discussed, the main
conclusions are as follows:

• If a reliable method is available to correlate the
TOA with the orientation and distance of a
generic point from the source, a satisfactory
ANN architecture can be found and exploited
without need of experimental tests.

• The virtually trained ANNs were able to locate
the source with satisfactory accuracy; for the
best solution found, Dm of the predicted from
actual point location was 1.85 mm, SD was 3.89
mm, and Dmax was 7.03 mm.

• The possibility of using ANN in the perform-
ance of virtual testing to study the effect of sen-
sor number and arrangement on the accuracy of
the measurements was supported by the results
obtained.
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